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correlation function formalism
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We report on nonequilibrium molecular dynamics (NEMD) simulation results on the color conductivity of
fluids confined in cylindrical nanopores. Because conventional NEMD methods are restricted to fields several
orders of magnitude stronger than those accessible by experiment, these methods have provided access so far
only to the response of the fluid under far-from-equilibrium conditions. Using the transient-time correlation
function formalism, we show how NEMD simulations can be extended to study the conductivity of a model
liquid confined in a cylindrical nanopore and subjected to an arbitrarily low (and realistic) field. Our results
provide a full picture of the dependence of conductivity on the applied field and on the effective diameter of
the nanopore. They also demonstrate that the conductivity steadily increases—up to twice the value evaluated
for the bulk—as the effective radius of the pore decreases.
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Understanding the transport of ions through nanoscopic
pores is essential for many scientific and technological appli-
cations such as, e.g., the ionic permeation of zeolites, carbon
nanotubes, and ion channels through cell membranes [1-4].
Nonequilibrium molecular dynamics (NEMD) simulations
provide a direct access to the microscopic structural changes
induced by the applied field. It is therefore a valuable tool for
understanding how the structure and the transport properties
of liquids are affected by the external field. However, con-
ventional NEMD methods allow study only of systems sub-
jected to very strong fields, typically of the order of
10° V m~!' [5,6], i.e., several orders of magnitude larger than
the experimentally accessible rates. Therefore, these methods
provide insight into the response of the fluid only under far-
from-equilibrium conditions. The limitation to very strong
fields directly stems from the conventional NEMD method.
In conventional NEMD simulations, properties are averaged
over the steady state. For weak fields, the signal-to-noise
ratio is very small: the steady-state response becomes very
noisy and the steady-state averages are essentially impossible
to analyze. Having a large signal-to-noise ratio (and hence
subjecting the fluid to very strong fields) is crucial to obtain
meaningful averages in the steady state. This basically pre-
vents the nonequilibrium response from being accessed for
realistic values of the field. Therefore, a direct comparison
between simulation and experiment still remains impossible.

The aim of this work is to address the inability of conven-
tional NEMD methods to study the response of a liquid sub-
jected to experimentally accessible fields. For this purpose,
we consider the transient-time correlation function (TTCF)
formalism [7-10]. The TTCF formalism is essentially a non-
linear generalization of the Green-Kubo relations. Although
this formalism is fairly general, applications of the TTCF
approach have been restricted so far to the determination of
the viscosity of simple fluids at low shear rates [11-14], to
simple liquids undergoing elongational flow [15], and, more
recently, to the viscosity of decane [16] and the electric con-
ductivity of molten sodium chloride [17]. In this work, we
show how the TTCF approach can be applied to determine
the conductivity of a fluid confined in a nanopore and sub-
jected to a realistic field.
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From a practical point of view, application of the TTCF
method consists in monitoring the response of the system
over a large number of nonequilibrium trajectories. For that
purpose, we generate many equilibrium configurations dur-
ing the course of a long equilibrium trajectory (governed by
Newton’s equations of motion). Each of these configurations
is the starting point for a nonequilibrium trajectory. The non-
equilibrium trajectory is generated by subjecting the fluid to
a color field E along the x direction. Color fields have been
used to understand phase transitions in strongly driven sys-
tems (such as colloidal mixtures [18]) and transport (through
the evaluation of the color conductivity) in recent years. Dur-
ing both the equilibrium and nonequilibrium trajectories, the
temperature of the system is fixed by adding a thermostatting
term to the equations of motion. Using a thermostat for the
whole confined fluid relies on the assumption that, when the
confined fluid is subjected to an external field, no significant
temperature gradient develops across the confined fluid. The
essentially flat temperature profiles observed in previous
work [19-21] support this approximation. We expect even
flatter temperature profiles for the very weak fields studied in
this work with the TTCF approach. The choice of a specific
thermostatting method may have a significant effect on the
results obtained during the nonequilibrium trajectories
[22-25]. Most thermostats fix the value taken by a kinetic
expression for the temperature defined from an ad hoc ver-
sion of the equipartition theorem [5,6]. In this expression, the
temperature is evaluated from the streaming kinetic energy,
i.e., the kinetic energy relative to the flow of each species.
Any inaccuracy in the determination of the flow velocities
may result in inaccuracies in the calculated current and con-
ductivity. Recent work has shown that this problem can be
circumvented by using a configurational thermostat [26-31]
based on a purely configurational expression for the tempera-
ture [32,33].

The equations of motion for the nonequilibrium trajecto-
ries are defined as follows:
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in which r;, p;, m, and z; denote the position, momentum,
mass, and charge of particle i, E the color field (collinear to
the x axis), ® the potential energy of the system, kz Boltz-
mann’s constant, 7 the target value for the temperature, and
7 an additional dynamical variable which plays the role of a
friction coefficient. O, can be thought of as the mass asso-
ciated with the heat bath. The equations of motion for the
equilibrium trajectories can be recovered by simply setting
E=0. This thermostat fixes the configurational temperature

Tons defined as kpTon=(ZN,(V,D)?)/(EN, VD) to the tar-
get value. As shown by Braga and Travis [30], these equa-
tions of motion generate the canonical distribution.

We now briefly outline the general derivation proposed by
Evans and Morriss [10] to show how it can be applied to a
fluid following the equations of motion given by Eq. (1). Let
us consider a phase variable B(I'), where I" denotes a phase
space point. In the Heisenberg representation, the average of
B at time 1 is (B(t))=[dI" f(0)B(I";z), where f(0) is the ini-
tial distribution function. If we differentiate this expression
with respect to time, we obtain, for time-independent exter-
nal fields,

drl’ 9B(t)

dl f(0)———. 2)

d(B(r)) f
dr dr or

By integrating by parts and realizing that the boundary term
vanishes in periodic systems [10], we see that

dB(1)) _
dt

fdr B(t )—d—f(O) (3)

Finally, integrating with respect to time, we obtain the non-
linear nonequilibrium response

! d dr
(B(1))=(B(0)) - fo ds f dFB(s)E-;f(O) 4)

If the initial distribution is canonical and if the dynamics of
the system follows Eq. (1), then, to the first order [10],

Kl dr ar . 0 [ =HyT)
{0t ) <o | 25 (a0
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where Hy=3 p; /(2m)+<I>+Q 7%/2 is the Hamiltonian of
the extended system Since E is collinear to the x axis, we
define the color current along the x axis as JX=EZ]zipi/mV,
where V is the volume accessible to the confined fluid. The
average of B at time ¢ is given by
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If we choose B(r)=J,(t), the equilibrium average (J.(0)) is
equal to 0 and we obtain the following expression for (J,(1)):

U0 = % f ((5)7,(0)ds. )
0

It is then straightforward to evaluate the color conductivity
according to

(o) =" f (J(5)J.(0))ds. (8)

The interactions between particles were modeled using the
Weeks-Chandler-Anderson modification of the Lennard-
Jones potential (if r is the distance between two particles,
d(r)=—4&[(a/r)°=(a/r)'*]+e for r=2"%c and 0 other-
wise). The two types of particles differ only in the way they
couple to the color field (half of the particle is assigned a
charge z;=1 while the other half is assigned z;=—1). In other
words, there is no Coulombic interaction between particles.
Throughout this work, we use a reduced system of units [34]
in which the units of length, mass, and energy are o, m, and
e. We carried out simulations of the bulk as well as of the
confined fluid. We choose to confine the fluid in cylindrical
nanopores of a radius R, whose section is perpendicular to
the x axis (and thus to the applied field). The interaction
between the particles and the confining wall is defined as
bui(r)=e{o/[R—\(*+ )] if [R-1(*+27)]=2"°0 and
0 otherwise. As always there is some ambiguity in defining
the effective radius and thus the effective volume for the
confined system. We choose to define the effective radius by
R.=R—1. All simulations for the bulk and the confined sys-
tems were carried out at constant number density n=0.84
and constant temperature 7=0.75. We used systems of N
=256 particles for simulations of the bulk and of the nar-
rower pores (effective radii of 2.5, 3, and 4) and N=512
particles for the larger pores (effective radii of 6 and 7). We
integrate the equations of motion with a Runge-Kutta inte-
grator and a time step of 2X 1073, The parameter for the
configurational thermostat Q,, is set to 5X 10° as in Ref.
[30]. Periodic boundary conditions are applied to the system
in the three directions of space for the simulations of the bulk
and in the x direction only for the simulations of the confined
fluid. Each system was started off by inserting the particles at
random positions within the desired volume. The systems
were first equilibrated for 10° time steps. During subsequent
simulation runs, we selected 10 000 equilibrium configura-
tions for each system at intervals of 2-3 time units. From
each of these configurations, we can define three other equi-
librium configurations: (i) by reversing the sign of the mo-
menta of all particles (also termed time-reversal mapping
[10]), (ii) by mirror symmetry (reversing the sign of x and p,
for all particles), and (iii) by applying both the time-reversal
mapping and the mirror symmetry. The 40 000 configura-
tions so obtained were the starting points for the nonequilib-
rium trajectories. In addition to being more efficient, this
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FIG. 1. Bulk. TTCF estimate (line) of the color current for an
applied field of 2, 1, 0.1, 1073, 1079, and 10~ (from top to bottom).
Direct averages (circles) are shown for fields of 2, 1, and 0.1.

procedure also ensured that (J,(0)) was exactly zero.

We begin by assessing the reliability of the TTCF ap-
proach for the bulk. We summarize in Fig. 1 the results ob-
tained for the color current using the TTCF formalism. The
TTCF approach allows for an accurate determination of the
color current, in the transient regime as well as in the steady
state, over the whole range of color fields studied from 107°
to 2. This is a definite improvement over the conventional
NEMD method, which is unable to give a reliable estimate
for the color current for fields below 1073, We will illustrate
this point later in this paper on the example of the confined
fluid.

There are essentially two ways of assessing the validity of
the TTCF approach developed in this work. First, when the
color field tends toward zero, the value for the color conduc-
tivity given by the TTCF approach [Eq. (8)] should exhibit a
plateau and converge toward the Green-Kubo estimate for
the conductivity. This is because the system enters the linear
response regime as the color field decreases. We carry out
equilibrium molecular dynamics simulations in the NVT en-
semble over 2000 time units and estimate the color conduc-
tivity according to the following Green-Kubo expression:

V <]
il fo (J ()J,(0))ds. )

We find a Green-Kubo estimate for the color conductivity of
0.048 = 0.005. Using the TTCF [Eq. (8)], we find that the
color conductivity reaches a plateau of 0.051+0.005 for
fields below 1073. The excellent agreement between the
Green-Kubo and the TTCF estimates demonstrates the reli-
ability of the TTCF approach. Second, for very high fields,
the direct steady-state average should coincide with the
TTCF estimates. This is because (i) the TTCF formalism
gives an exact relation between the nonlinear steady-state
response and the transient-time correlation function and (ii)
for a strong enough field, the signal-to-noise ratio is large
enough for steady-state averages to be measured. The direct
steady-state average can be measured during the course of
the NEMD simulations as
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FIG. 2. Cylindrical nanopore with an effective radius of 4. Color
current against the color field for an applied field of 2, 1, 0.1, 1073,
1076, and 10~ (from top to bottom).

N,
E Jx,i(t)

i=1
==, (10)

where N,=40 000 is the number of nonequilibrium trajecto-
ries considered. As shown in Fig. 1, the direct steady-state
average and the TTCF estimate for the color current are in
excellent agreement for the stronger fields, thereby demon-
strating the reliability of the TTCF approach under far-from-
equilibrium conditions.

We extend the TTCF approach to systems confined in
cylindrical nanopores and subjected to a color field. We plot
in Fig. 2 the TTCF results obtained for the color current
when the fluid is confined in a pore of R.;=4. The TTCF
approach allows us to obtain reliable estimates of the color
current for a confined fluid, both in the transient regime and
in the steady state, over the whole range of fields we studied,
i.e., from 10~ to 2. We plot in Fig. 3 TTCF estimates of the
color conductivity for a fluid confined in a pore of R 4=2.5.
As observed for the bulk for strong applied fields, we find
that the TTCF estimate and the direct average give results in
excellent agreement (e.g., for a field of 1 in Fig. 3). Simi-
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FIG. 3. Cylindrical nanopore with an effective radius of 2.5.
Color conductivity against the color field for an applied field of 1
(direct average, dashed line; TTCF estimate, circles) and of 1073
(direct average, solid line; TTCF estimate, diamonds).
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FIG. 4. Color conductivity as a function of the applied color
field: bulk (filled circles) and cylindrical nanopores with an effec-
tive radius of 6 (squares), 5 (down triangles), 4 (up triangles), 3
(diamonds), and 2.5 (open circles).

larly, for a weaker field (below 0.001), the signal-to-noise
ratio becomes too small and carrying out a direct average
over the 40 000 NEMD trajectories leads to a very noisy and
unreliable estimate for the color conductivity (see, e.g., the
result for a field of 0.001 in Fig. 3).

We finally summarize the results obtained for all systems
(bulk and confined) in Fig. 4. Confining the fluid in a na-
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nopore, with an effective radius larger than or equal to 2.5,
systematically results in an increased conductivity with re-
spect to the bulk. The conductivity strongly depends on the
effective radius of the cylindrical nanopore. For R >3, the
conductivity increases as the effective diameter of the pore
decreases. We obtain similar values for the conductivity for
the two narrower pores, R.;=2.5 and 3. The maximum
conductivity—roughly twice that of the bulk—will be ob-
tained for an effective diameter of about 2.5. When the fluid
is confined in a narrower pore, R.;=2, there is not enough
room for the particles of different colors to move in opposite
directions. As a result, for R;=2, we find that the current,
and hence the conductivity, vanishes in the steady state.

In this work, using the TTCF, we showed how NEMD
simulations can be extended to study the conductivity of a
model liquid confined in a cylindrical nanopore subjected to
a realistic field. Our results provide a full picture of the de-
pendence of conductivity on the applied field and on the
effective diameter of the nanopore. Our results show that a
nanoscopic confinement enhances the conductivity since the
conductivity steadily increases—up to twice the value evalu-
ated for the bulk—as the effective radius of the pore de-
creases. The method developed in this work can be readily
applied to realistic models for electrolytes for any kind of
pore geometry.
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